
PVS

CollectionSwitch: A Framework for
Efficient and Dynamic Collection Selection

Diego Costa, Artur Andrzejak

Heidelberg University

International Symposium on Code Generation and Optimization (CGO 18)
Feb 26th 2018, Vienna Austria

Published as:

Paper/slides available at: https://pvs.ifi.uni-heidelberg.de/publications/

CollectionSwitch: A Framework for
Efficient and Dynamic Collection Selection

Diego Costa, Artur Andrzejak

2

Heidelberg University

Diego Costa and Artur Andrzejak. 2018. CollectionSwitch: a framework for efficient and dynamic collection selection.
In Proceedings of the 2018 International Symposium on Code Generation and Optimization (CGO 2018). Vienna, Austria —
February 24 - 28, 2018

https://pvs.ifi.uni-heidelberg.de/publications/

Programs = Data Structures + Algorithms

Niklaus Wirth (1984)

3

Collections

• In Java, the Collections framework provides a reusable set of
data structures

• Widely used and well tested

• One Interface → multiple implementations

• Developers rarely select/tune their collections [Cha++11]

• Top-4 most used implementations are selected 95% of the cases [Cos++17]

• Only 20% of the ArrayList instantiations specify the initial capacity [Cos++17]

4

Performance Impact of Collections

Inefficient selection of collections as the main cause of runtime bloat

Execution Time

+17% Improv.

Configuration of one

HashMap alloc-site

[LS09]

Memory Usage

+54% Improv.

Use of ArrayMaps

instead of HashMaps

[OME09]

Energy Consumption

+38% Improv.

Use of ArrayList

instead of LinkedList

[Sam++16]

How to better identify and fix such performance inefficiencies?

5

Motivational Scenario

Program
Timeline

List<T> myList = new ArrayList<>();

for(T elem : collection) {
if(!myList.contains(elem)){

myList.add(elem);
}

}

List<T> myList = ctx.createList();

for(T elem : collection) {
if(!myList.contains(elem)){

myList.add(elem);
}

}

6

List<T> myList = new ArrayList<>();

for(T elem : collection) {
if(!myList.contains(elem)){

myList.add(elem);
}

}

Program
Timeline

Motivational Scenario

Program
Timeline

Profile Instances Behavior

Instance #8

size
lookup ↑
remove

Instance #8

size
lookup ↑
remove

Instance #8

size
lookup ↑
remove

Ivje #8

size
lookup ↑
remove

Profile

size
search ↑
remove

It is possible to find and switch
the collection type to a more

suitable variant?

new ArrayList<>()

new HashArrayList<>()

List<T> myList = ctx.createList();

for(T elem : collection) {
if(!myList.contains(elem)){

myList.add(elem);
}

}

7

Exemplary Results

• The DaCapo benchmark of Lucene and Avrora
• Few allocation sites generate millions of collection instances

• Lucene: By augmenting 12 allocation sites with our adaptive
behavior

• Reduce execution time by 15%

• Avrora: By augmenting 10 allocation sites with our adaptive
behavior

• Reduce peak of memory consumption by 10%

8

CollectionSwitch

A framework for Dynamic Adaptation of Java Collections

Combines two techniques:

1. Adaptive Allocation-Site
• Profiles collection instances

• Searches for a better variant

• Switches future instantiations to the best variant type

2. Adaptive Collections
• Instances that switch themselves to the appropriate implementation

9

Framework Overview

Application

Selection

Rules

Modify

Allocation-sites

Specify

Performance Goals
Target

Machine

A) How to Enable Adaptive
Collections?

CollectionSwitch

B) How to Define the
Performance Goals?

Run Application

Manage Collections

Runtime Profile

C) How to Find a Better
Implementation?

10

A) How to Enable Adaptive Collections

• Using CollectionSwitch in your project

// Original Allocation-Site
List<T> myList = new ArrayList<>();

// Using CollectionSwitch
static ListContext ctx = Switch.createContext(ARRAY);
List<T> myList = ctx.createList();

Application
Collections

Library

new()

Application
Collections

Library

Allocation

Contextcreate() new()Allows same-interface transformations

11

B) How to define the Performance Goals?

Configurable Selection Rules
• Space and time trade-offs

• Developers input the threshold for selecting a different variant

𝑅𝑡𝑖𝑚𝑒

𝑅𝑎𝑙𝑙𝑜𝑐

Improvement Max Penalty

Time -20%

Allocation -20% Time +125%

Selects a variant when its predicted time
performance is at least 20% better

only Array variants!

Selects a variant when its predicted
allocation performance is at least 20%
better with max time penalty of 25%

Rule

• A variant is selected when it satisfies the rule
• Criteria satisfied by multiple variants? Select the variant with biggest improvement

12

C) How to Find a Better Variant?

ArrayArrayArray

Adaptive Allocation

Contextctx = Switch.createContext(ARRAY);

myList = ctx.createList();

for(;;) {
myList.contains(obj);

}

myList2 = ctx.createList();

Monitor

ArrayList
myList
myList

Instance Profile

containsCounter++

Array

Feedback

Performance

Models

Application Source-Code

?

Monitoring the Collections
Usage

Estimating the
Performance of Variants

13

Monitoring the Collections Usage

Monitor

ArrayList

Profile

size
lookup ↑
remove
…

Is
monitoring

set full?

ctx.createList();

ArrayList

no

yes Monitoring Set

14

Monitoring the Collections Usage

Monitor

ArrayList

Profile

size
lookup ↑
remove
…

Is
monitoring

set full?

ctx.createList();

ArrayList

no

yes

Are most of
the profiles
complete?

Analyze Profiles
yes Clear Monitoring

Set

no
Wait for ∆t time

Monitoring Set

15

Monitoring the Collections Usage

Analyze Profiles
yes

Discard Profiles

no

Instances have been assigned for
garbage collection

Parametrized ratio 𝑟
𝑟 = 0.3 too unstable

𝑟 = 1.0 too slow

𝑟 = 0.6 good compromise

Wait for ∆t time

Are most of
the profiles
complete?

16

Estimating the Performance

We compare variants 𝑉 performance according to the total cost
metric 𝑇𝐶 𝑉

Collection Profile
• Maximum size 𝑠 of the collection

• Amount of called operations 𝑁𝑜𝑝

𝑡𝑐 𝑉 = ෍

𝑜𝑝

𝑁𝑜𝑝 ∗ 𝑐𝑜𝑠𝑡𝑜𝑝,𝑉(𝑠) Performance

Models

avg. cost of
operation 𝑜𝑝

𝑇𝐶 𝑉 =෍𝑡𝑐(𝑉)

17

Estimating the Performance

• Polynomial function of the collection size 𝑠

• We design a series of benchmarks to calculate the coefficients

𝑐𝑜𝑠𝑡𝑜𝑝,𝑉(𝑠) = ෍

𝑘=0

𝑑

𝑎𝑘𝑠
𝑘

Factor Levels/Categories

Size [10, 100,200,…,1M]

Operations populate, contains, iterate, middle, remove

Data Type Integer

Data Distribution Uniform

• + 30 variants

• Single Operation Scenario

• Measurement Variables
• Execution Time

• Memory allocation
18

Estimating the Performance

• Selects a variant 𝑉𝑛𝑒𝑤 to replace the current 𝑉𝑐𝑢𝑟when is
satisfies the Performance Rule

𝑇𝐶𝑎𝑙𝑙𝑜𝑐 𝑉𝑛𝑒𝑤
𝑇𝐶𝑎𝑙𝑙𝑜𝑐 𝑉𝑐𝑢𝑟

≤ 0.8 ⋀
𝑇𝐶𝑡𝑖𝑚𝑒 𝑉𝑛𝑒𝑤
𝑇𝐶𝑡𝑖𝑚𝑒 𝑉𝑐𝑢𝑟

≤ 1.25

𝑅𝑎𝑙𝑙𝑜𝑐

Improvement Max Penalty

Allocation = -20% Time = +125%

19

Adaptation on Instance Level

• CollectionSwitch can also switch to an adaptive variant
• Second level of adaptation

• Adaptive Collections
• Small sizes: Memory efficient implementation (array)

• Large sizes: Time efficient implementation (hash)

Variant Transition Threshold

AdaptiveSet Array -> Hash 40

AdaptiveMap Array -> Hash 50

Transition is done by copying
the elements

20

Evaluating the Model I

• Micro-benchmarks
• Population of the collection

• 100 searches of a random element

𝑅𝑡𝑖𝑚𝑒

Improvement

Time = 20%

Rule

21

Evaluating the Model II

• Micro-benchmarks
• Population of the collection

• 100 searches of a random element

𝑅𝑡𝑖𝑚𝑒

Improvement

Time = 20%

Rule

𝑅𝑎𝑙𝑙𝑜𝑐

Improvement Max Penalty

Allocation = 20% Time = 20%

Rule

22

Evaluating the Performance Improvement

• DaCapo benchmarks
• Real applications

23

Evaluating the Overhead

• Estimation of Variants Performance
• Below 300 ns

• Memory Overhead

• Footprint of each Allocation
Context ~1Kb.

𝑅𝑖𝑚𝑝

Improvement

Time = ∞%

Rule• DaCapo

• No significant overhead

24

Summary

• Selecting the appropriate collection is critical for designing
efficient Java applications

• CollectionSwitch selects collection at runtime through:
• Adaptive allocation-sites

• Adaptive collections

• Improvement on execution time and memory of real
applications

25

Thank You!

diego.costa@informatik.uni-heidelberg.de

26

References

• [Cha++11] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and Santosh Pande.
2011. Brainy: effective selection of data structures. (PLDI ‘11)

• [Cos++17] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. Empirical Study of
Usage and Performance of Java Collections. (ICPE '17)

• [LS09] Lixia Liu and Silvius Rus. 2009. Perflint: A Context Sensitive Performance Advisor
for C++ Programs. (CGO '09)

• [OME09] Ohad Shacham, Martin Vechev, and Eran Yahav. Chameleon: adaptive selection
of collections. (PLDI '09)

• [Sam++16] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh, Bram Adams,
and Abram Hindle. 2016. Energy profiles of Java collections classes. (ICSE '16)

27

