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Abstract Software ecosystems play an important role in modern software develop-
ment, providing an open platform of reusable packages that speed up and facilitate
development tasks. However, this level of code reusability supported by software
ecosystems also makes the discovery of security vulnerabilities much more difficult,
as software systems depend on an increasingly high number of packages. Recently,
security vulnerabilities in the npm ecosystem, the ecosystem of Node.js packages,
have been studied in the literature. As different software ecosystems embodied dif-
ferent programming languages and particularities, we argue that it is also important
to study other popular programming languages to build stronger empirical evidence
about vulnerabilities in software ecosystems.

In this paper, we present an empirical study of 1,396 vulnerability reports affect-
ing 698 Python packages in the Python ecosystem (PyPi). In particular, we study the
propagation and life span of security vulnerabilities, accounting for how long they
take to be discovered and fixed. In addition, vulnerabilities in packages may affect
software projects that depend on them (dependent projects), making them vulnera-
ble too. We study a set of 2,224 GitHub Python projects, to better understand the
prevalence of vulnerabilities in their dependencies and how fast it takes to update
them. Our findings show that the discovered vulnerabilities in Python packages are
increasing over time, and they take more than 3 years to be discovered. A large por-
tion of these vulnerabilities (40.86%) are only fixed after being publicly announced,
giving ample time for attackers exploitation. Moreover, we find that more than half of
the dependent projects rely on at least one vulnerable package, taking a considerable
long time (7 months) to update to a non-vulnerable version. We find similarities in
some characteristics of vulnerabilities in PyPi and npm and divergences that can be
attributed to specific PyPi policies. By leveraging our findings, we provide a series
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of implications that can help the security of software ecosystems by improving the
process of discovering, fixing and managing package vulnerabilities.

Keywords Python · PyPi · Packages · Vulnerabilities · Empirical Studies.

1 Introduction

Modern software systems increasingly depend on external reusable code. This reusable
code takes the form of packages (e.g., libraries) and is available from online reposi-
tories and often delivered by package management systems, such as npm for Node.js
packages and PyPi for Python packages. The collection of packages that are reused
by a community, together with their users and contributors is denoted as a software
ecosystem. While software ecosystems have many benefits, providing an open plat-
form with a large number of reusable packages that speed up and facilitate devel-
opment tasks, such openness and large scale leads to the spread of vulnerabilities
through package network, making the vulnerability discovery much more difficult,
given the heavy dependence on such packages and their potential security prob-
lems [1].

Many software applications depend on vulnerable packages [2]. The two most
critical aspects in dealing with package vulnerabilities are how fast developers can
discover and fix the vulnerability, and how fast the applications (client projects) up-
date their packages to incorporate the fixed versions. The delay between discovering a
package vulnerability and releasing its fix may expose the applications to threats and
increase the likelihood of an exploit being developed. Heartbleed, a security vulnera-
bility in OpenSSL package, is perhaps the most infamous example. The vulnerability
was introduced in 2012 and remained uncovered until April 2014. After its disclosure,
researchers found more than 692 different sources of attacks attempting to exploit the
vulnerability in applications that used the OpenSSL package [3].

Hence, studying how vulnerabilities propagate, get discovered and fixed is es-
sential for the health of ecosystems. Recent studies [4–6] analysed the impact of
vulnerabilities in the npm ecosystem. Zerouali et al. [7] found that it takes 26 months
to discover 50% of npm package vulnerabilities, whilst 82% of the discovered vul-
nerabilities are fixed before being publicly announced, where they are less likely to
be exploited.

While npm is one of the largest software ecosystems to date [8], the investiga-
tion of npm vulnerabilities provides an important but restricted view of the software
development ecosystems. How much of the findings are particular to npm’s develop-
ment culture and how much of it can be generalized to other ecosystems? We argue
that it is important to study other software ecosystems to contrast with npm and draw
more generalizable empirical evidence about vulnerabilities in software ecosystems.

This motivated us to take a new look and provide a wider picture by studying
security vulnerabilities in the PyPi ecosystem. Furthermore, Python is a major pro-
gramming language in the current development landscape, used by 44.1% of profes-
sional developers according to the 2020 Stack-Overflow survey [9].

Hence, this paper has extended our previous work (Alfadel et al. [10]) replicat-
ing and extending our study on security vulnerabilities in Python packages. We con-
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duct an exploratory research to study security vulnerabilities prevalence and their
respective discovery and fix timeline in the Python ecosystem. In this study, we aim
to answer the following research questions (RQs):

– RQ1: How are vulnerabilities distributed in the PyPi ecosystem?
– RQ2: How long does it take to discover a vulnerability in the PyPi ecosystem?
– RQ3: When are vulnerabilities fixed in the PyPi ecosystem?
– RQ4: How long does it take to fix a vulnerability in the PyPi ecosystem?
– RQ5: How often are dependent projects affected by vulnerable dependencies?
– RQ6: How long do dependent projects take to update their vulnerable dependen-

cies?
Our extended study provides the following key additions:

– We updated and extended our study of the PyPi security vulnerabilities and in-
creased the vulnerability dataset from 550 security reports to a set of 1,396 re-
ports. Our new dataset covers vulnerabilities reported from 2006 to 2021.

– We extended our analysis by examining the impact of vulnerable packages on a
large set of dependent Python projects (RQ5 & RQ6).

– We updated our comparison to the npm ecosystem by comparing our findings,
where applicable, to a similar study on npm by Zerouli et al. [7].

– We developed a tool called DEPHEALTH, which illustrates analytical reports of
security vulnerabilities that affect Python packages in terms of their discovery
and fix lifetime.
To answer our research questions, we analyzed 1,396 vulnerability reports that

affect 698 Python packages of which 30,915 package versions are affected. We ob-
served several interesting findings. In some aspects, our study yields similar findings
to the ones observed in the npm study [7]. For example, vulnerabilities in both ecosys-
tems take a significantly long time to be discovered, approximately 2 years in the npm
and 3 years in the PyPi ecosystem.

However, in other aspects, our results show a drastic departure from npm’s re-
ported findings. For example, unlike npm, a large number of PyPi vulnerabilities
(40.86%) were only fixed after being publicly announced, which may increase the
chances of having the vulnerability exploited by attackers. Our further investigation
attributes such observation to the particularities of the PyPi ecosystem’s protocol of
disclosing and publishing vulnerabilities.

Based on our empirical findings, we offer several important implications to re-
searchers and practitioners to help them provide a more secure environment for soft-
ware ecosystems. To summarize, this paper makes the following contributions:

– We perform the first empirical study to analyse security vulnerabilities in the
Python ecosystem. Our study covers 16 years of PyPi reported vulnerabilities,
affecting 698 Python packages.

– We compare the findings of our study to a previous study conducted on the npm
ecosystem. We also provide implications that aim at a more secure development
environment for software ecosystems.

– We build a tool called DEPHEALTH, which uses the analysis approach in our
study to generate analytical report of security vulnerabilities that affect Python
packages.
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– We make our dataset of this study publicly available to facilitate reproducibility
and future research.

Data availability statement. The dataset we curated and analyzed during the current
study is available in the following repository [11].

Paper organization.
Section 2 presents the motivation of our study. Section 3 presents concepts and termi-
nologies related to software package vulnerabilities, which we adopt throughout our
study. Section 4 describes the terminology and the process of collecting and curating
our dataset. In Section 5, we dive into our study by motivating and describing the
methods used to investigate each research question, as well as presenting the find-
ings obtained in our study. We discuss the results and implications of our study in
Section 6. We present our tool in Section 7. We state the threats to validity and lim-
itations to our study in Section 8. Related work is presented in Section 9. Finally,
Section 10 concludes our paper.

2 Motivation

Vulnerabilities in third-party packages are a growing concern for the software devel-
oper. GitHub (the report in 2018 [12]) reported that over four million vulnerabilities
were raised to the attention of developers of over 500 thousand GitHub repositories.
Known examples of package vulnerabilities include the ShellShock and Heartbleed
vulnerabilities [13], which caused widespread damage to broad and diverse software
ecosystems. Durumeric et al. [3] showed that 24% of the secure sites that adopt the
OpenSSL package, the project where the Heartbleed vulnerability originated, were
affected and impacted by Heartbleed.

The speed at which ecosystems react to vulnerabilities and the availability of
fixes to vulnerabilities is of paramount importance. Several lines of prior works sup-
port this intuition. Several studies [4,14,15] encourage developers to use security best
practices, e.g., security monitoring, to prevent and detect package vulnerabilities as
fast as possible. Other work [5, 6, 16, 17] focused on studying the impact of package
vulnerabilities at the ecosystem level. While these prior studies have made impor-
tant advances, they have tended to focus on (i) the largest software ecosystems, i.e.,
npm (NodeJS projects). For example, Decan et al. [5] analyzed how and when npm
package releases with vulnerabilities are discovered and fixed. Also, Decan et al. [17]
analyzed npm package releases to explore the evolution of technical lag and its im-
pact. While npm is one of the largest software ecosystems to date, the investigation
of npm vulnerabilities is a restricted view of the software development ecosystems.
We argue that it is important to study other software ecosystems to contrast with
npm and draw more generalizable empirical evidence about vulnerabilities in soft-
ware ecosystems. Our argument is supported by previous studies (e.g., [16, 18–20])
that show differences across ecosystems. For instance, Decan et al. [16] found that
the PyPi ecosystem has a less complex and intertwined network than ecosystems
such as npm and CRAN. This is partially due to Python’s robust standard library,
which discourages developers from using too many external packages in contrast to
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Fig. 1: The lifetime of vulnerability discovery and fix of package P and dependent
project X over time. Red and green releases indicate whether releases are vulnerable
or not.

JavaScript and R ecosystems. Furthermore, there is also a research gap that relates
to (ii) the analysis of the package vulnerability fixes with respect to the dependent
projects (downstream clients). Vulnerabilities in packages can only be exploited once
used in other dependent projects and once these projects are released and used in
production. This is important to understand to what extent dependent projects are
affected by vulnerable dependencies.

To bridge these two research gaps, we set out to study the security vulnerabilities
prevalence and their respective discovery and fix timelines in the Python ecosystem
(PyPi). We compare our analysis to the npm ecosystem study by Zerouli et al. [7].
We incorporate this analysis in the first four research questions (RQ1 - RQ4). Then,
we expand our analysis of vulnerabilities in the PyPi ecosystem to encompass the
dependent projects. We examine the releases of a large set of GitHub open-source
Python projects, to better understand the impact of vulnerable packages on depen-
dants, which we demonstrate in RQ5 and RQ6.

3 Concept and Terminology

In this section, we present concepts and terminologies related to software package
vulnerabilities, which we adopt throughout our study.

3.1 Vulnerability Lifecycle

The lifetime of a vulnerability typically goes through various stages, according to
when a vulnerability was first introduced, discovered, and publicly announced [21].
To ground our study, we use the various stages and define dates specific to a package
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vulnerability.

Package side. Figure 1 illustrates the lifecycle of a vulnerability of package P (the
lower part of the figure). We break the lifecycle into four main stages:

– package vulnerability introduction date indicates when the vulnerability was first
introduced in the affected package, i.e., the release date of the first affected ver-
sion by the package vulnerability. Figure 1 shows the vulnerability of package P
being introduced in the PV 1.0.0 release.

– package vulnerability discovery date indicates the date on which the package
vulnerability was discovered and reported. Figure 1 shows the vulnerability of
package P being discovered after the PV 1.0.1 release (orange star).

– package vulnerability fix date indicates the release date of the first fixed version of
the package vulnerability. In Figure 1, PV 1.1.0 is the first fixed release of package
P.

– package vulnerability publication date marks the date when the vulnerability in-
formation (and report) was publicly announced. The vulnerability publication
may happen before or after the fixed version (PV 1.1.0) is released.

Dependent project-side. Prior work suggests that lags in adopting a fixed version of
vulnerable packages could result from migration efforts [21]. Thus to quantify this
effort, we study the extent to which dependent projects (client) are using vulnerable
packages and how long it takes to use the package-side fixing release. Developers of
the vulnerable package fulfilled their responsibility, thus, the adoption responsibility
is left to the dependent project maintainers. Figure 1 shows the timeline of a depen-
dent project (X), illustrating the first affected release of the project as well as its first
release that adopts a fixed version of the package P. As illustrated in the figure, project
X suffers a lag in the adoption of a package-side fixing release. The first affected re-
lease of project X is XV 2.0.0 which relies on Package PV 1.0.1, i.e., X was vulnerable
in its version V2.0.0 due to its dependency (PV 1.0.1). To mitigate the vulnerability,
package P creates a new branch, i.e., the minor branch, which includes the package-
side fixing release (PV 1.1.0). Project X finally adopts the new release of package P in
its version V2.1.0. We consider that project X has a lag because it actually skipped
the package-side fixing release (PV 1.1.0). Instead, client X adopted the next release
(PV 1.1.1). A possible cause of lags is the potential migration effort needed to switch
branches, i.e., from PV 1.0.1 to PV 1.1.1. The migration effort for major or minor changes
may include breaking changes or issues in the release cycle of the project X.

3.2 Package Vulnerability Example

Figure 2 show a practical case of a vulnerability report extracted from Snyk.io (the
vulnerability dataset we used in our study). The vulnerability report is for a library
that provides an internal representation and powerful image processing capabilities,
i.e., pillow. The vulnerability report contains detailed information regarding the iden-
tified problem, its severity, and a proof-of-concept (references) to confirm the threat.
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(a) pillow vulnerability report with high severity.

(b) The report dates of the pillow vulnerability report.

Fig. 2: Example of a vulnerability report extracted from Snyk.io for the package
pillow.

Figure 2a shows that pillow was vulnerable to high severity. Also, the report con-
tains information related to the vulnerability lifecycle. As shown in Figure 2b, the
vulnerability was disclosed on Jan 2, 2020, and published on Jan 10, 2020.

4 Methodology

In this section, we present the methodology of our study. An overview is also pro-
vided in Figure 3. In particular, we explain how we collect and prepare the data used
to investigate our research questions.

Data Collection. To conduct our study, we collect two datasets: (1) the Python (PyPi)
packages and (2) the security vulnerabilities that affect those PyPi packages. We ob-
tain the information of PyPi packages from Libraries.io [22], and the security vulner-
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Fig. 3: An overview of our study design showing the process of collecting our pack-
age and vulnerability dataset.

abilities from the Snyk.io dataset [23]. Our dataset collection considers PyPi pack-
ages and vulnerability reports that are available till June, 2021, i.e., we collect all
vulnerability reports that were published before June, 2021.

To collect the PyPi packages, we use the service Libraries.io since it provides the
PyPi packages along with their respective metadata. The metadata provides detailed
information about each package, such as the existing versions and the creation times-
tamps of those versions. Such data is needed to map the affected versions given by our
vulnerabilities dataset. Also, we need the versions timestamps to perform time-based
analyses, such as the time it takes to discover and fix a vulnerability with respect to
the first affected package version.

To collect the vulnerabilities for the PyPi packages, we resort to the dataset pro-
vided by Snyk.io [24]. Snyk.io is a platform that monitors security reports to provide
a dataset for different package ecosystems, including PyPi, and publishes a series of
information about vulnerabilities. We show in Table 1 an example of a security report
extracted from Snyk.io dataset for the package pillow. For each affected package, the
dataset specifies the type of vulnerability, the vulnerability constraint (this helps us to
specify the affected versions) and the fixed versions (remediation range). Moreover,
the report contains the dates when the vulnerability was discovered and the date when
it was published on Snyk.io dataset. Severity level has four possible values, critical,
high, medium, and low, which are assigned manually by the Snyk.io team based on
the Common Vulnerability Scoring System (CVSS) [25].

Data Processing. As a pre-processing step, we need to determine all the vulnerable
packages and their associated versions. First, we obtain the list of all versions of all
vulnerable packages from the Libraries.io dataset. Then, we determine the affected
versions of the vulnerable packages by cross-referencing the vulnerability constraint
of the Snyk.io report (e.g., < 6.2.2) and resolving the versions by using the SemVer
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Table 1: Example of a security report extracted from Snyk.io for the pillow package.

Information Example

Vulnerability type Buffer Overflow
Affected package name pillow
Platform type PyPi
Vulnerable constraint (affected versions) < 6.2.2
Vulnerability Discovery date 03 Jan, 2020
Vulnerability Published date 10 Jan, 2020
Severity level High
Remediation ≥ 6.2.2

tool [26]. In the particular example of Table 1, we resolve the constraint < 6.2.2 to a
list of 68 versions of the pillow package affected by the Buffer Overflow vulnerability.

We want to analyze the time needed to discover a package vulnerability, hence,
we need to identify the version that was first affected by a vulnerability. To that aim,
once we identify the list of affected versions, we consider the first affected version
as the oldest version of the vulnerable package. In the example of Table 1, the first
affected version was the package version 1.0.0.

We also aim to investigate the time it takes to fix a package vulnerability once
the vulnerability is discovered. This requires that we identify the first fixed version
of the package vulnerability. Similar to the identification of the first affected version,
once we resolve the remediation range by using the SemVer tool, we collect a list
of versions in which the vulnerability is considered fixed. We then assign the first
fixed version as the oldest package version present in the list of fixed versions. In the
example of Table 1, the first fixed version is the package 6.2.2.

Our initial dataset contains 1,483 vulnerability reports on the PyPi packages.
From this original set, 68 vulnerabilities do not match any packages in the Libraries.io
database and were removed from our analysis. We also removed 19 vulnerabilities
of type “Malicious Package”, because they do not really introduce vulnerable code.
These vulnerabilities are packages with names close to popular packages (a.k.a. typo-
squatting) in an attempt to deceive users at installing their harmful packages. At the
end of this filtering process, our dataset contains 1,396 vulnerability reports. Such re-
ports affect 698 Python packages in PyPi. Note that these 698 Python packages have
released a total of 30,915 versions, in which, according to the vulnerable constraint
of reports, 26,851 versions contain at least one reported vulnerability. Table 2 shows
the descriptive statistics of our dataset.

As part of our study goal is to compare our results to the npm study, we verify
how our dataset compares with the one used by Zerouali et al. [7]. The npm dataset
contains 2,786 vulnerabilities which affect 1,672 npm packages. We can observe that
the npm dataset has more than double the number of vulnerability reports and affected
packages in the PyPi dataset, given that npm has had the highest growth rate in terms
of packages amongst all known programming languages [8].
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Table 2: Descriptive statistics of the PyPi dataset.

Source Stats #

Libraries.io PyPi packages 334,294
Versions of PyPi packages 2,955,586

Snyk.io

Security reports on PyPi 1,396
Corresponding vulnerable packages 698
Versions of vulnerable packages 30,915
Affected versions by vulnerability 26,851

5 Study Results

In this section, we present the findings of our empirical study. For each RQ, we
present a motivation, describe the approach used to tackle the research question and
discuss the results of our analysis.

5.1 RQ1: How are vulnerabilities distributed in the PyPi ecosystem?

Motivation. Prior work reported a steady growth of packages in software ecosys-
tems [17, 20]. This growth may have serious repercussions for package vulnerabili-
ties, facilitating their spread to high number of packages and applications, and mag-
nifying their potential for exploitation. Therefore, in this RQ we investigate how soft-
ware package vulnerabilities are distributed in the PyPi ecosystem. We examine the
distribution from three perspectives: a) the trend of discovered vulnerabilities over
time; b) how many versions of packages are affected by vulnerabilities; and c) what
are the most commonly identified types of vulnerabilities in PyPi.

Approach. To shed light on the distribution of software vulnerabilities in the PyPi
software ecosystem, we leverage the following approaches:

In the first analysis, we focus on investigating the trend of discovered vulnera-
bilities over time in the PyPi ecosystem. In essence, we want to investigate how the
number of discovered vulnerabilities change and how many packages are affected as
the ecosystem grows? To do that, we group the discovered vulnerabilities by the time
they were reported, and present the evolution of the number of vulnerabilities and
affected packages per year. We also break the analysis per severity level, provided by
Snyk.io, to help us quantify the level of threat of newly discovered vulnerabilities in
the ecosystem.

In the second analysis, we investigate the vulnerabilities distribution over package
versions. A single vulnerability can impact many versions of a package, making it
harder for dependents to select a version unaffected by this vulnerability. To that aim,
we utilize the vulnerability constraint provided by the Snyk.io dataset (mentioned in
Table 1) to identify the list of affected versions by a vulnerability.

The third analysis has the goal of reporting the most commonly identified vulner-
ability types in the PyPi ecosystem. The Snyk.io dataset associates each vulnerability
report with a Common Weakness Enumeration (CWE) [27], aiming at categorizing
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Fig. 5: Introduction of vulnerabilities per year by the severity levels: critical, high,
medium, and low.

vulnerabilities based on the explored software weaknesses (e.g. Buffer Overflow).
Currently, CWE contains a community-developed a list of more than 700 common
software weaknesses. We examine the frequency of vulnerability types to establish
a profile of the vulnerabilities in the PyPi ecosystem. In addition, we also break our
analysis by severity level to investigate how the threat levels are distributed in each
vulnerability type.

Findings. Figure 4 shows the number of discovered vulnerabilities as well as the
number of packages being affected over the years. We observe a steady increase in
the number of vulnerable packages, accompanying the PyPi ecosystem growth.
In 2014, in the middle of this ecosystem lifetime, 43 packages were discovered to
be vulnerable, in 2021 this number increased five-fold, i.e., 212 vulnerable packages
were newly discovered.

Figure 5 presents the introduction of vulnerabilities over time by the severity
level, showing that the majority of newly discovered vulnerabilities are of medium
and high severity. Overall, the vulnerabilities classified with medium severity make
the bulk of 64.03% of all vulnerabilities, followed by high severity vulnerabilities
representing 25.42% of our dataset. Still, a non-trivial portion (4.39%) of the vul-
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Fig. 6: Distribution of versions and affected versions of the 698 vulnerable packages
of our dataset. In median, packages have 40 versions and 37 affected versions once a
vulnerability is discovered.

nerability reports were classified as critical vulnerabilities. These findings are worri-
some to the PyPi community, as such vulnerabilities have a higher chance of being
exploited, i.e., allow an attacker to execute malicious code and damage the software.

Figure 6 shows bean plots of three distributions: the number of versions of the 698
vulnerable PyPi packages in our dataset (Figure 6a), the number of affected versions
in such vulnerable packages (Figure 6b), and the percentages of vulnerable versions
in the packages (Figure 6c). We observe that most packages have dozens of versions
(median number of versions is 40), and tend to have, on median, 37 vulnerable ver-
sions. The affected versions represent an alarmingly high proportion of all versions
in a package, considering the package versions available at discovery time of the vul-
nerability. Figure 6c shows that half of the packages have at least 83.64% of their
versions affected by a vulnerability, when a vulnerability is first discovered. The
result indicates that vulnerabilities are not limited to a few versions of a package,
making it difficult for dependents to rollback to an unaffected version if a fix is not
available at the time of the vulnerability discovery.

Since vulnerabilities can have different types (e.g., Buffer Overflow and SQL
injection), we examine the different vulnerability types given by the Common Weak-
ness Enumeration (CWE) that PyPi packages have. While we found that packages in
the PyPi ecosystem are affected by 119 distinct CWEs, the majority of the discov-
ered vulnerabilities (51.79%) are concentrated on 10 main types. Table 3 shows
the distribution of the vulnerabilities over the 10 most commonly found CWEs. As
we can see, XSS is the most common CWE with 266 vulnerabilities. Also, we ob-
serve that most of the XSS vulnerabilities are of medium severity. For the remaining
CWEs, the proportion in each type varies from 21 vulnerabilities of type Authentica-
tion Bypass to 151 of type Denial of Service (DOS). Breaking down the proportions
of vulnerabilities by severity shows that the majority of vulnerabilities from these
types are of medium and high severity, indicating that they represent a serious threat
to affected applications. This is particularly severe for the vulnerabilities of Arbitrary
Code Execution type, where we found a higher frequency of high severity vulnerabil-



Empirical Analysis of Security Vulnerabilities in Python Packages 13

Table 3: Ranking of the 10 most commonly found vulnerability types (CWE) in PyPi.

Rank Vulnerability type (CWE) Freq. Frequency by severity
Critical High Medium Low

1 Cross-Site-Scripting (XSS) 266 1 27 227 11
2 Denial of Service (DoS) 151 0 37 107 7
3 Information Exposure 139 4 21 100 14
4 Arbitrary Code Execution 112 16 53 42 1
5 Access Restriction Bypass 41 3 12 24 2
6 Regular Expression Denial of Service (ReDoS) 29 0 14 12 3
7 Improper Input Validation 28 0 8 2 18
8 Directory Traversal 27 1 13 4 9
9 Remote Code Execution (RCE) 23 1 12 10 0

10 Authentication Bypass 21 2 7 12 0

ities than of medium and low severity levels combined, with a non-trivial proportion
of critical vulnerabilities.

Comparison to the npm ecosystem. The vulnerabilities found in npm [7] followed
a similar distribution to our findings in the PyPi ecosystem. In npm, a) the newly
discovered vulnerabilities are increasing over the time, and the majority of those vul-
nerabilities are also of medium and high severity; b) such npm vulnerabilities are
not limited to a few versions, i.e., 75% of vulnerable packages have more than 90%
of their versions being affected by a vulnerability at the discovery time; c) Direc-
tory Traversal and XSS was found to be the most common vulnerability among npm
vulnerabilities (i.e., 322 and 331 occurrences, respectively).

The number of vulnerabilities is increasing over time in the PyPi ecosystem
accompanying the growth of the ecosystem. Newly reported vulnerabilities
tend to be of medium and high severity and affect the majority of versions of
a software package. The majority of vulnerabilities are concentrated on ten
vulnerability types, with Cross-Site-Scripting (XSS) being the most common.

5.2 RQ2: How long does it take to discover a vulnerability in the PyPi ecosystem?

Motivation. This question aims to investigate how long it takes to discover package
vulnerabilities in the PyPi ecosystem. Answering this question is relevant since the
longer a vulnerability remains undiscovered, the higher the chances it will be ex-
ploited by attackers. Also, since security maintainers need to discover vulnerabilities
as soon as possible to mitigate the harmful impact, providing them with informa-
tion regarding the life cycle of a vulnerability discovery is vital. Therefore, in this
question, we study how long does it take to discover a vulnerability since it was first
introduced in the package’s source-code?

Approach. Our goal is to calculate the time required to discover a vulnerability in
the PyPi ecosystem. To do so, we collect the discovery dates of all the vulnerabilities
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Fig. 7: Kaplan-Meier survival probability for package vulnerabilities to get discov-
ered for all vulnerabilities (left-side plot) and for vulnerabilities broken by severity
(right-side plot).

from the Snyk.io dataset. Then, we obtain the timestamps of the vulnerabilities intro-
duction date from Libraries.io (as described in Section 4). Note that the vulnerability
introduction date is the release date of the first affected version by the package vul-
nerability. We then calculate the time difference between the vulnerabilities discovery
date and the vulnerabilities introduction date.

To gain more insight into the time it takes to discover the vulnerabilities, we con-
duct a survival analysis method (a.k.a. event history analysis) [28]. Our empirical
analysis in the RQs relies on the statistical technique of survival analysis (a.k.a. event
history analysis [29]). Such technique is useful for our analysis because it models
“time to event” data with the aim to estimate the survival rate of a given population,
i.e., the expected time duration until the event of interest occurs (e.g., death of a bio-
logical organism, failure of a mechanical component, recovery of a disease). Survival
analysis models take into account the fact that some observed subjects may be “cen-
sored” either because they leave the study during the observation period, or because
the event of interest was not observed for them during the observation period. A com-
mon non-parametric statistic used to estimate survival functions is the Kaplan-Meier
estimator. This test has also been used in previous studies (e.g., [5, 30]).

Findings. Figure 7 presents the survival probability for the vulnerability before it
gets discovered. The Left-side plot of Figure 7 reveals that half the vulnerabilities
took 39 months to be discovered. In practice, this shows that vulnerabilities are not
discovered early in the project development. Also, this long process for discovering
vulnerabilities explains why a single vulnerability tends to affect dozens of package
versions once it is first discovered (RQ1).

Since vulnerabilities impact packages at different severity levels, we break down
the analysis of discovered vulnerabilities by their severity. The right-side plot of Fig-
ure 7 presents the survival probability for the event “vulnerability is discovered” by
their severity. We found statistically significant differences when comparing the dif-
ferent severity levels. We confirm this result by using the log-rank statistical method [31]
to investigate the statistical significance of the results with a confidence level 95% (p-
value = 0.022). Critical vulnerabilities take longer to be discovered (median = 64
months), followed by low severity vulnerabilities (median = 45), medium sever-
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ity vulnerabilities (median = 40), and high severity (median = 30). One possible
explanation for vulnerabilities with critical severity taking significantly longer is that
such cases are not immediately reported and disclosed, given their harmful impact on
the software and higher chance of being exploited. Also, such cases involve higher
complexity (higher CVSS scores), which may require longer to be discovered and
validated.

Comparison to the npm ecosystem. We found a significant difference on the time
it takes to discover a vulnerability between the PyPi and npm packages. Vulnerabili-
ties are discovered with a median of 26 months in the npm ecosystem, considerably
sooner than the 39 months required for PyPi package vulnerabilities. Given the pop-
ularity of Javascript programs, npm became a prime target for attackers [6], which
may have contributed to a faster identification of vulnerabilities. Overall, npm and
PyPi vulnerabilities still take considerably long time to discover vulnerabilities, indi-
cating an issue in the process of testing and detecting vulnerabilities in open source
packages.

Package vulnerabilities in the PyPi ecosystem take, on median, more than
3 years to get discovered. Critical vulnerabilities take longer (64 months)
to be discovered than high (30 months) and medium severity (40 months)
vulnerabilities.

5.3 RQ3: When are vulnerabilities fixed in the PyPi ecosystem?

Motivation. Vulnerable packages remain affected even after they are discovered [5,
32]. In fact, in many cases, a method of exploitation is reported when the vulnerability
is made public, which increases the chances of the vulnerability being exploited by
attackers [33]. Therefore, it is of paramount importance that developers release a fix
of the package vulnerability quickly. In open-source ecosystems, a quick fix is the
only weapon at developers disposal for minimising the risk of exploitation. Hence,
in this question we provide package maintainers and users with information about
at which stage a vulnerability fix is released in the PyPi ecosystem with respect to
its discovery and publication date, i.e., we investigate whether a vulnerability fixed
version is released before or after the vulnerability becomes publicly announced to
better understand the threat level of PyPi package vulnerability.

Approach. Our goal is to study when vulnerabilities are fixed. To that aim, we cat-
egorise a vulnerability fix based on the stages of a vulnerability lifecycle. In other
words, we analyse if the fix version was released before the vulnerability discovery
time, in between the discovery time and publication time, or after the vulnerability is
made public.

To achieve our goal, we obtain, for each vulnerability, the date of the first fixed
version and compare it to the discovery and publication dates. The fix can then be
categorized as: “before the vulnerability has been discovered” or short FixBefore-
Disc, “between discovery and publication date” or short FixBetweenDiscPub, “after
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Fig. 8: Percentages of vulnerabilities according to the release time of the first fixed
version by severity.

the vulnerability has been made public” or short FixAfterPub, and “Never Fixed”.
We then report the frequencies of fixes in each category.

Findings. Figure 8 shows the distribution of vulnerabilities according to the four
stages in which the first fixed version was released. We can observe that 40.86% of
vulnerabilities were fixed after the vulnerability has been made public, with the
observation being more noticeable for vulnerabilities of medium and low severity (C
= 28.04%, H = 29.17%, M = 45.73%, and L = 44.07%). Such results indicate that a
non-negligible proportion of the PyPi package vulnerabilities become public before
having any patch addressed to fix them.

For the remaining vulnerabilities, 18.82% of all vulnerabilities were already fixed
even before their discovery. One possible explanation is that the maintainers of such
affected packages prefer to disclose the vulnerability and report its information while
working in silence on a fix to mitigate its impact and reduce the chances of being
exploited by potential attackers. Finally, 37.77% of the vulnerabilities were fixed
between the vulnerability discovery date and the vulnerability publication date.

Comparison to the npm ecosystem. Unlike npm, our findings show that a substantial
share of PyPi package vulnerabilities tend to be fixed only after publication. In npm,
82% of vulnerabilities are fixed after the vulnerability discovery time and before its
publication time. Our findings for PyPi show a different picture, with a large number
of vulnerabilities (40.86%) being fixed after their publication. Such differences can
be attributed to community practices and policies in each ecosystem for reporting
and disclosing vulnerabilities. We discuss these policies, their limitations, and how to
better control them in section 6.
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A substantial share of vulnerabilities (40.86%) are only fixed after the vul-
nerability is made public, while 18.82% are fixed before the vulnerability is
first discovered, and 37.77% are fixed between the discovery and publication
dates.

5.4 RQ4: How long does it take to fix a vulnerability in the PyPi ecosystem?

Motivation. So far, we have observed that the vast majority of vulnerabilities are
fixed after the vulnerability is reported to be discovered, either in between discov-
ery and publication (37.77%) or after the vulnerability publication (40.86%). In this
question, we focus on those vulnerabilities and investigate how long it takes for a fix
patch to be released after a vulnerability is reported to be discovered. Vulnerabilities
that remain un-patched for a long time after being reported and discovered can leave
an open channel for successful attacks. Also, a healthy open source package should
have a quick response to most vulnerability reports. Therefore, answering this ques-
tion will give us important insights about the prioritization of fixing vulnerabilities of
a package.

Approach. To achieve our goal, we focus now on only those vulnerabilities that get
fixed after being discovered, i.e., we omit vulnerabilities that have their fixed versions
before the discovery date (18.82%). For the remaining vulnerabilities, we conduct
the survival analysis method to provide information about how long it takes to fix
a vulnerability after being discovered. We calculate the time difference between the
release date of the first fixed version and the vulnerability discovery date. Similarly
to the analysis conducted in Section 5.2, we use the Kaplan-Meier estimator [29] for
the survival analysis. Furthermore, to understand if the severity level of a vulnera-
bility has any impact on the time required to fix a vulnerability, we also conduct the
previous analysis per severity level.

Findings. Figure 9 presents the survival probability for the vulnerabilities to be fixed
after being discovered. As we can observe from the left-side plot, 50% of the vul-
nerabilities are fixed 2 months following the discovery time. Also, we can observe
that there is a small share (7.37%) of those vulnerabilities that still take more than a
year to get fixed after being discovered.

The right-side plot of Figure 9 presents the previous analysis per severity level.
Using the log-rank statistical method [31], we found no statistically significant dif-
ference in the time to fix vulnerabilities of different severity levels with a confidence
level 95% (p-value = 0.05).

We further analyse the vulnerable PyPi packages that took more than a year for
their vulnerabilities to be fixed after the discovery date, to gain insights as to why
they take such a long time to address potentially impactful vulnerabilities. Upon close
manual inspection, we found that 64.7% of these packages are not popular (i.e., have
less than 1000 downloads) and are not actively maintained, with the latest version
been released two years ago. We expect the developers of those vulnerable packages
to be unresponsive to security reports.
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Fig. 9: Kaplan-Meier survival probability for vulnerable packages to get fixed after
being discovered and reported.

Comparison to the npm ecosystem. Our findings show that PyPi package vulner-
abilities overall take longer to be fixed than those found in npm. In npm, it takes
a median of 11 days to fix vulnerabilities, regardless of their severity. In PyPi, we
found that PyPi vulnerabilities take a median of 2 months to release a fix after the
vulnerability has been discovered.

Vulnerabilities in PyPi take, on median, 2 months to be fixed. The severity
level of a PyPi vulnerability does not make a statistically significant differ-
ence for the time needed to fix the reported vulnerabilities.

5.5 RQ5: How often are dependent projects affected by vulnerable dependencies?

Motivation. So far, our research has focused on assessing the vulnerability lifecycle
at the package ecosystem level. However, vulnerabilities in packages can only be ex-
ploited once used in other dependent projects and once these projects are released and
used in production. In this RQ, we want to expand our analysis of vulnerabilities in
the PyPi ecosystem to encompass the dependent projects. To what extent are depen-
dent projects affected by vulnerable dependencies? How often releases carry vulner-
able dependencies and what share packages affect dependent projects the most? We
examine the releases of a large set of GitHub open-source Python projects, to better
understand the impact of vulnerable packages on dependants.

Approach. To study the impact of vulnerabilities that affect ecosystem packages from
the end-user projects’ point of view, we need to collect a dataset of projects. To do
so, we collect historical data of Python GitHub projects using the GitHub API.

Since GitHub hosts projects that are not yet immature or of sufficient complex-
ity to warrant analysis, we apply several criteria for selecting a set of high-quality
projects. We first choose projects with ten starts at least, as such projects are con-
sidered of interest to the community. Prior work reported that a 10 stars threshold
is a reasonable mechanism to remove most personal and toy projects unlikely to be
relevant for empirical studies [34]. Also, a survey of over 700 developers shows that
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Table 4: Statistics of the 2,224 projects selected for our study.

Statistics Min Median Average Max

Stars 10 260 1,532.37 100,709
Project age (years) 3 6.24 6.52 11.83
Number of commits 100 1047 2813.73 157,121
Number of contributors 2 26 51.01 449
Number of files 16 3,317 12,611.02 186,784,9

most developers consider the number of stars before using or contributing to GitHub
projects [35]. After that, we chose non-forked applications with at least 100 commits
and 2 developers (with the latest commit pushed after June 1, 2021), as similar fil-
tering criteria were used in prior work [36–39]. Finally, using the GitHub meta-data
that we obtain after requesting the API, we select projects that use PyPi platform as
the dependency management tool and that have produced at least one release. A re-
lease of a GitHub project exposes release notes and links to download the software
or source code from GitHub. This helps us to specifically collect the list of project
dependencies at each release.

After this curation process, we are left with 2,224 projects for our investigation.
We show in Table 4 the statistics of the projects under a variety of metrics. Our
selected dataset contains popular Python projects (median stars of 260), with history
of long development (median of 6.24 years), and developed by multiple collaborators
(median of 26 collaborators).

After selecting the projects for our study, we mine and analyse their releases. For
each project, we obtain all releases by hitting the GitHub API. Then, for each release,
we search for the dependency file (e.g., requirements.txt), where the list of project
run-time dependencies are listed. After gathering the files, we parse them to extract
the list of project dependencies along with their defined version constraints. For each
project, we analyse each produced release in the project and check whether the release
lists any vulnerable package versions that have been reported and published. Note that
in some cases, the dependency is defined with a dynamic version constraint. Hence,
to determine the exact version of the package to be installed for each release, we use
the dependency constraint resolver [26]. For this analysis, we consider a release to
be vulnerable if it contains a vulnerable dependency as a direct dependency, thus,
we disregard vulnerabilities from transitive dependencies. Project maintainers have
full control over the direct dependencies of their project and have to monitor their
dependencies to be aware of vulnerabilities that may expose their project.

Findings. Out of the 2,224 projects in our dataset, 1,237 (55.62%) projects have
at least one release depending on vulnerable dependencies. Hence, the majority of
the Python projects we investigate are affected by vulnerabilities in the PyPi ecosys-
tem.

To get a better understanding of the impact of vulnerable dependencies on the
project release productions, we plot in Figure 10 the bean plots of three distributions:
the number of project releases of the 1,237 vulnerable Python projects in our dataset
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Fig. 10: Distribution of releases and affected releases of the vulnerable dependent
projects in our dataset. On median, projects have 26 releases and 18 affected releases.

(Figure 7a), the number of affected project releases in such vulnerable projects (Fig-
ure 7b), and the percentages of vulnerable releases in the projects (Figure 7c). We
observe that most projects have dozens of releases (median of 26 releases), and tend
to have, on median, 18 vulnerable releases. The affected releases represent an alarm-
ingly high proportion of all releases in a project. Figure 7c shows that the percentage
of releases affected by a dependency vulnerability in a project is 83.77%, on me-
dian.

While most releases in affected projects contain vulnerable dependencies, the
affected releases may have been released in the initial development phase of the
projects, where the security concern was not at its peak. To investigate this, we anal-
yse how many of the 1,237 projects have a vulnerable release as its most recent (lat-
est) release. We found that, out of the 1,237 projects, 58,72% are affected by at
least one vulnerable dependency in the latest project release. This indicates that
the problem of vulnerable dependencies is not relegated to the initial phases of the
project. Rather, the majority of projects are exposed to vulnerable dependencies in
the most recent project release.

Within every project, there are dozens of dependencies, however, not all of them
are exposing the project to security vulnerabilities. Hence, we conduct an analysis
to quantify the share of vulnerable packages over all project dependencies in the
affected 1,237 projects. To that aim, we compute the number/share of vulnerable de-
pendencies in each project release and then aggregate this information across project
releases, by calculating the median number of vulnerable dependencies. Figure 11
shows three distributions: the median number of project dependencies taken with re-
spect to the the project releases (Figure 8a), the median number of affected project
dependencies in such vulnerable projects (Figure 8b), and the percentages of vulner-
able dependencies in the projects (Figure 8c). We observe that most projects have
a few dependencies (median number of dependencies is 16), and tend to have, on
median, only a single vulnerable dependency. The affected dependencies represent
only a very small portion of all dependencies in a project. Figure 8c shows that the
percentage of vulnerable dependencies is 9.52%, on median. Finally, when consider-
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Fig. 11: Distribution of packages and affected packages of the vulnerable dependent
projects in our dataset. On median, project releases have 16 packages and only 1
vulnerable package.

ing the severity level of dependency vulnerabilities that affect the dependent projects,
we find that the majority of vulnerabilities are of low (46.75%) and medium severity
(44.034%).

To gain more insights into our results, we consider two main analyses. First, we
look at vulnerable packages dependent projects depend on, which allows us to assess
how popular packages may affect an ecosystem of dependent projects. To do this,
we first obtain the list of packages affecting the dependent project in our dataset.
Then, for each package, we count how many dependent projects are affected by
each package. This analysis benefits both package maintainers and project devel-
opers, e.g., by increasing their awareness of the most vulnerable packages affecting
dependent projects. Second, we study the domain of packages affecting dependent
projects. Such analysis will help package maintainers and project developers under-
stand if certain types of packages offer more risk of vulnerabilities given their domain
and functionality.

While more than 600 packages are reported to be vulnerable, less than 7%
of the packages tend to affect most of the dependent projects in our dataset.
Figure 12 shows the percentage of dependent projects affected by each vulnerable
package. From the figure, we observe that only 45 packages (6.4% out of 698) affect
the dependent projects in our dataset. Moreover, we can observe that the majority
(35 out of 45) of packages affect between 1% - 5% of the dependent projects. How-
ever, only 10 packages affect > 5% of the projects (i.e., between 6% - 24% of the
dependent projects). We looked at the domain of the top 10 packages affecting de-
pendent projects. Table 1 shows a list of the 10 packages and some information to
help us better understand the packages’ use case, e.g., their domain/functionality and
frequency in the dependent project. From the Table, we observe that packages of
different domains are common in the affected projects. For example, the vulner-
able packages numpy and urllib3 are used in 23.83% of the affected projects. Such
packages are common because they provide basic but essential functionalities that
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Fig. 12: Percentage of dependent projects affected by vulnerable packages.

Table 5: List of 10 packages with their domain and percentage of dependent projects
affected by the packages.

Vulnerable package Domain % Affected projects

numpy
Support large, multi-dimensional arrays and matrices,
along with a large collection of high-level mathematical functions. 23.83

urllib3 HTTP client with thread-safe connection pooling. 23.83
lxml XML processing library combining libxml2/libxslt with the ElementTree API. 20.47
cryptography Cryptographic recipes and primitives to Python developers. 16.44
gunicorn Python HTTP Server for UNIX. 12.42

pycrypto
Cryptographic modules for Python (e.g., SHA256) and
various encryption algorithms (AES, DES, RSA, ElGamal, etc.) 9.4

django Web framework that follows the model–template–views architectural pattern. 8.05
django-filter Reusable Django application for allowing users to filter querysets dynamically. 7.38
sphinx Python documentation generator. 6.38
pillow Python image processing library. 6.04

support projects from different domains. For instance, the numpy package supports
large, multi-dimensional arrays and matrices, along with a large collection of high-
level mathematical functions. The urllib3 package is an HTTP client for Python con-
nection pooling, and it helps with client-side SSL/TLS verification, and file uploads
with multipart encoding.

Comparison to the npm ecosystem. Similar to the npm study, our study shows that
the majority of dependent projects are affected by vulnerabilities in their dependen-
cies. Our findings show that more than half of Python dependent projects are affected
by vulnerable dependencies. In npm, 79% of npm dependent projects have at least
one vulnerable dependency. In both ecosystems, one single vulnerable package could
be responsible for exposing most of dependent projects to dependency vulnerabilities.
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The majority (55.62%) of the dependent projects depend on vulnerable de-
pendencies. Affected projects have, on median, 83.77% of their releases af-
fected. In most cases, projects are affected by just a single vulnerable depen-
dency.

5.6 RQ6: How long do dependent projects take to update their vulnerable
dependencies?

Motivation. A dependent project should keep its dependencies updated, especially
for security updates. When a vulnerable package published a new version that in-
cludes a security fix, dependent projects should pull the fixed version. Unfortunately,
this is not always the case since dependency constraints may limit the range of ver-
sions that a project can depend upon. Hence, in this RQ, we examine how long de-
pendent projects remain depending on a vulnerable package version. Doing so is
important to provide insights about the prioritization of fixing vulnerable dependen-
cies of a dependent project.

Approach. To analyse the time it takes to fix a vulnerable package in a depen-
dent project, we focus on the affected 1,237 dependent projects in our dataset. For
those projects, we analyse the vulnerable releases, i.e., for each vulnerable release,
we extract the affected dependencies in the release (dependencies with vulnerable
versions). Then, for each vulnerable dependency, we search for the earliest project
release that contains a non-vulnerable version of the corresponding dependency. Fi-
nally, we calculate the time difference between both releases. For example, if a project
release defines a vulnerable version of package A at release 5, and it only updates to
a fixed version at release 7, we then calculate the time difference between release 5
and release 7.

Findings. Figure 13 presents the Kaplan-Meier survival curves of the probability for
vulnerable packages in dependent projects to get fixed. From the figure, we observe
that dependent projects take a considerably long time to update their depen-
dency vulnerabilities to fixed versions (median = 7 months), regardless of the
severity level. In fact, this is more than the time needed to fix vulnerabilities in the
corresponding upstream packages, which is two months (see RQ4). This indicates
that dependent projects still need to constantly monitor their dependencies, especially
for security fixes.

As outlined in our approach, our analysis of dependent projects is based on their
releases. Hence, the release cycle may have an impact on the time to update a vul-
nerable package in the dependent project. To shed light on the release cycle impact,
we analyse how many releases are produced before a vulnerable package version
become updated to a non-vulnerable version in the newer release, i.e., how many re-
leases are produced between the release that contain a vulnerable package version
and the release with the corresponding non-vulnerable version of the package.
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Fig. 13: Kaplan-Meier survival probability for vulnerable packages in dependent
projects to get fixed.

On median, we found that it takes only 2 releases of the project to update
to a non-vulnerable version, i.e., the vulnerable dependency is only updated in the
second release produced after the vulnerable release. Nevertheless, we found that it
may take long time for the project to produce a new release (median = 3 months). This
indicates that the release cycle may cause a lag in the vulnerable package updates,
especially if the project has a release cycle.
Comparison to the npm ecosystem. Our findings show that Python dependent projects
take, regardless of severity levels, a median of 7 months to update their vulnerable
dependencies. The analysis related to the time required to fix a vulnerable depen-
dency in a dependent project was not conducted by the npm study, and hence, it is
not applicable to make such a comparison.

Half of the dependent Python projects take a long time, a median of 7 months,
to update their vulnerable dependencies to a fixed version. The project release
cycle may cause such projects to remain vulnerable even if fixed versions are
available; it takes 2 releases before the vulnerable package is updated.

6 Discussion and Implications

In this section, we discuss more details about our results with comparison to the
npm ecosystem (Section 6.1). Then, we highlight the implications of our study to
researchers and practitioners (Section 6.2).

6.1 Comparison to the npm ecosystem

As shown in our comparison to the npm, some of our findings generalized also to
the npm ecosystem, while others did not. Therefore, in this section, we delve into
some of the reasons both ecosystems exhibit some similar characteristics as well as
explanations about the divergent findings.
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Vulnerability distribution. Both studies found that the number of newly discovered
vulnerabilities are growing over time. We attribute the reason for this increase to the
increasing popularity of open source components combined with the awareness of
vulnerabilities in such components [2]. At first sight, this is a healthy sign of both
ecosystems. The increase in the number of reported vulnerabilities is a result of co-
ordinated efforts in increasing awareness and continuous process testing packages
to identify the vulnerabilities before they can be exploited. However, the growth of
the ecosystem calls also for the continuous and comprehensive effort for analysing
package vulnerabilities to mitigate their negative impact.

We observed that the vast majority of the vulnerabilities identified in the npm
and PyPi ecosystems are of medium severity.We believe that this observation is due
to the fact that many of the tools used by security package maintainers to discover
vulnerabilities in open source packages are not qualified to find more complex and
critical issues although they are good at discovering new vulnerabilities. Robust tools
that combine exhaustive techniques like program analysis, testing, and verification
are required to find high-hanging vulnerabilities [40].

We observed that Cross-Site-Scripting (XSS type or CWE-79), is the most com-
mon vulnerability found in both ecosystems. The dominance of the XSS CWE vul-
nerability can be justified by 1) its effectiveness in granting unauthorized access into
a system and the ease in which the attack method can be applied on a web applica-
tion [41,42]; and 2) the community efforts in taming this well-known vulnerability, as
identifying XSS has been a top concern by OWASP [43] for more than 15 years. We
conjecture that other types of vulnerabilities might be not as easily detectable, or easy
to exploit, taking away the incentive of attackers in searching such vulnerabilities in
the PyPi and npm ecosystems.
Vulnerabilities discovery, publication, and fix. In npm, the majority of reported
vulnerabilities (82%) were fixed after they were discovered and before the publica-
tion date [5]. Contrasting to these findings, we found 40.86% of the PyPi package
vulnerabilities to be fixed after the vulnerability has been made public. A possible
reason for this is that 3 out of 4 vulnerabilities in PyPi get published right after their
discovery, which reduces the time window for a vulnerability to be fixed.

To gain more insights, we investigate the protocol and policies in place for report-
ing and publishing vulnerabilities of both npm and PyPi ecosystems. We find that npm
ecosystem has a protocol for reporting and publishing vulnerabilities, which enforces
a 45 days waiting time before the publication of a vulnerability [44], aiming to give
package developers a time window to fix the vulnerability. In PyPi, however, if a
vulnerability is assessed to have low risk of being exploited or causing damage, the
PyPi security team prefers to publish the vulnerability right after its discovery [45].
We noticed that most vulnerabilities (74.55%) are published as soon as they are dis-
covered, effectively reducing the time window for a vulnerability to be fixed before
publication.

An example of that, is a security issue that was found in elementtree package [46].
In this issue, the vulnerability could cause serious problems (high-severity level)
through a Use-After-Free (UAF) [47] vulnerability related to incorrect use of dynamic
memory, where the attacker causes the program to crash by accessing the memory af-
ter it has been freed. Yet, the PyPi security team stated that in this specific case, an
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attacker could not exploit this vulnerability because it requires a privileged position
that is not often possible from the attacker side. Such specificities and polices is a
supportive reason behind having majority of vulnerabilities being fixed after the pub-
lic disclosure. Note that the risk assessment conducted by the PyPi security team
is different from the CVSS severity level assigned to a vulnerability in the Snyk.io
dataset [48].

6.2 Implications

In the following, we highlight the most important implications driven by our find-
ings. We provide implications to both researchers and practitioners by discussing the
aspects that the development community needs to address in order to provide a more
secure development environment for package ecosystems.

There is a dire need for more effective process to detect vulnerabilities in open
source packages. Our findings show that vulnerabilities in Python packages are hid-
den, on median, 3 years before being first discovered (RQ2). These findings point to
inadequacy process of testing open source packages against vulnerabilities. In fact,
both npm and PyPi allows to publish a package release to the registry with no security
checks exist before publishing the package. An open avenue for future research is the
development of a process that ensures some basic security checks (code vetting) be-
fore publishing a release of a package. Inspired by other ecosystems, such as mobile
application stores [49, 50], npm and PyPi could enforce some testing before publish-
ing a new release of a package. Recently, there have been several research attempts
to improve the security of the packages uploaded and distributed via the ecosystems,
e.g., [51,52] for PyPi, and Synode [53], NoRegrets [54] for npm. The vetting process
can start with the most popular packages and move gradually, given the growth of the
software ecosystems. Also, the code vetting process can focus on specific categories
of security issues, e.g., malicious code or code that steals sensitive information from
users, which is triggered by performing XSS attacks, the most common vulnerability
found in npm and PyPi (RQ1).

PyPi needs to employ a better protocol of publishing package vulnerabilities. The
current process of disclosing and publishing a package vulnerability in Python seems
to remain ad-hoc. Our findings show that over 50% of PyPi package vulnerabilities
were unfixed when they were first publicly announced (RQ3), and took a couple of
months to be fixed and released (RQ4). To better control the process of reporting
and disclosing package vulnerability information and limit its leakage, practition-
ers should refine the process to balance the advantages from an early and public-
disclosure process of a vulnerability versus private-disclosure process. A possible
improvement could be by forestalling the vulnerability publication until valued pack-
age users and vendors are privately notified about the vulnerability to give them a
little some time to prepare properly before the vulnerability is publicly disclosed.
Such controlled process is adopted by various internet networking software packages
like BIND 9 and DHCP [55]. The npm ecosystem defines to some extent a strict time-
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line for reporting a vulnerability providing only 45 days for package maintainers to
fix their vulnerabilities before publishing them. Yet, its efficacy is not known.

PyPi should deprecate packages that suffer continuously from vulnerabilities. In
our study, we observed that the vast majority of packages that take longer to fix vul-
nerabilities are due to project inactivity (RQ4). A relatively new idea introduced by
Pashchenko et al. [14] is the concept of “halted package”, which is a package where
the time to release the latest version surpasses by a large margin the time maintainers
took to release previous versions of the package. This concept can be used to iden-
tify packages that are becoming less maintained over time, and therefore, should be
replaced by a better maintained alternative in the software ecosystem.

PyPi and npm should provide package users with vulnerability information to
support them with the selection process of packages. Previous work [56] has stud-
ied several factors that influence the adoption of packages by developers. Researchers
report that the occurrence of vulnerabilities and the number of vulnerabilities not
quickly fixed in the packages are two important security-related factors. Currently,
both npm [57] and PyPi [58] package managers provide basic quality metrics on
package popularity for each package such as, list of versions, downloads count, stars
count, and number of open issues. However, they lack any information on security
issues. A methodology, similar to the one used in our study, could be employed to de-
fine a lightweight security metrics, to support developers when selecting their pack-
ages. An example of such metrics is to calculate the average time to patch a pack-
age vulnerability after been reported to be discovered (RQ4). This metric will give
package users insights about the prioritization of fixing vulnerabilities of the pack-
age. We developed a tool called DEPHEALTH (Section 7), which utilizes our analysis
approach in this study to generate analytical metrics of security vulnerabilities that
affect Python packages.

PyPi dependent projects should employ tools to audit vulnerabilities that affect
their dependencies. Our findings show that the Python dependent projects take a
significant long time before the vulnerable dependency gets fixed, and they are af-
fected by just a single vulnerable dependency (RQ5 & RQ6). This result illustrates
that maintainers of dependent projects should continuously monitor their dependen-
cies by integrating automated tools to quickly notify them of vulnerabilities in their
project dependencies. Recently, GitHub acquired Dependabot tool [59], a tool that
tracks vulnerabilities in several ecosystems. Maintainers of dependent projects can
adopt Dependabot, and utilize its features, e.g., prioritize the notifications for specific
set of affected dependencies in the project, given that only 9.52% of all dependencies
are responsible for vulnerabilities that affect the dependent projects. Moreover, de-
velopers should be aware of vulnerabilities in their packages before installing them.
Similar to the security audit tool provided by npm (i.e., npm audit) [60], which
warn developers when installing a known vulnerable package, PyPi community could
employ a similar tool that instantly warns developers about vulnerable packages once
the vulnerable package version is installed.
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While projects depend on thousands of packages, project maintainers should
pay attention only to a few specific packages that are responsible for most af-
fected projects. Our results (RQ5) show that the packages with the most vulnerabil-
ities affecting the dependent projects are utility packages, which are used by many
different types of projects. Therefore, project developers need to pay higher attention
to specific packages (e.g., numpy, urllib3, django) to track their updates and secu-
rity issues. Also, maintainers of those packages need to be responsive and seriously
consider finding and fixing security issues as fast as possible to prevent dependent
projects from being impacted. Finally, project maintainers can try to prioritize up-
dates of those packages to prevent their projects from potential risks.

Project maintainers should provide better strategies for producing releases to
consider a timely update of vulnerable dependencies. Our result (RQ6) shows that
vulnerable dependencies in the dependent projects are fixed within two project re-
leases produced after the vulnerable release, however, such releases take almost 6
months to be published. Hence, the project release cycle may cause lags for updating
vulnerable dependencies. Maintainers of the dependent projects are recommended
to publish a release as soon as they have applied the dependency fix. While this is
ideal, one possible way to achieve that is to evaluate the impact of the dependency
fix and consequently release a patch only for critical fixes. Such cases should also be
highlighted in the project release in a form of GitHub issues, or pull requests, to help
the project users be aware of the critical fixes. The project users can then download a
version of the project considering the history from the commit or the pull-request that
considers the highlighted fixes, as this feature is supported by the Git version control
system.

7 Tool Support

A critical issue of vulnerabilities that affect software packages is the lack of develop-
ers awareness [21]. Developers need help to better understand the security health of
the adopted packages in their projects, i.e., how timely package maintainers discover
and fix reported vulnerabilities. Moreover, a recent survey with developers indicated
a high demand for high-level metrics to assess the maintainability and security of
software packages [61].

To address this problem, we build a tool called Dependency Health (DEPHEALTH),
which uses the approach described in Section 4 to generate a report for security vul-
nerabilities that affect Python packages, i.e., we provide developers with metrics re-
lated to the life cycle of vulnerability discovery and fix, which help to give package
users insights about the prioritization of fixing vulnerabilities of the package.

Our tool generates two main metrics to help developers understand: 1) the dis-
covery timespan of package vulnerabilities, and 2) the fix timespan of package vul-
nerabilities. The tool also presents the data of the metrics broken by the severity level
of package vulnerabilities. Figure 14 shows a screen-shot of the DepHealth’s inter-
face. As shown in the figure, each row represents the relevant vulnerability data of a
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vulnerable package. Our tool (DepHealth) has the potential to help developers in two
major ways as follows:

– Modern applications rely on many third-party packages, and the number of pack-
ages adopted is growing over time. Therefore, project developers struggle to
check the security health of a particular package. In fact, a recent survey with
developers indicated a high demand for high-level metrics to asses the main-
tainability and security of software packages [62]. To help with this, our tool
prototype provides developers with the frequency of vulnerabilities that affected
packages in the past, i.e., the columns “Number of Vulnerability Reports” and
“Severity Level” presented in the tool website can help developers to grab the
risks of depending on such packages and better understand the security health of
the package.

– Moreover, the tool can work as a dashboard to provide developers with the av-
erage time a vulnerability takes to be discovered and fixed in the package (i.e.,
“Avg Time to Discover & Avg Time to Fix” in the tool website). Such analyt-
ical reports can help developers understand the degree to which a library would
be safe to use, i.e., if the time to discover and fix vulnerabilities in the library is
short, it is highly likely that the library is mature in terms of security. That said,
packages that do not discover and fix vulnerability fast incur a higher risk for
projects that use them and should be avoided by critical projects. We believe that
such information is important for developers to build a valuable picture of the
risk of adopted packages, not only using automated tools (e.g., Dependabot) to
update each and every package in the project but also high-level metrics to asses
the maintainability and security of software packages.

To facilitate using the tool, DEPHEALTH provides the user with an option to
search for a specific package to view its data, by using the search box in the interface
(the top-right of Figure 14). Also, the user can download (using the CSV button) a
complete version of the data presented in the website. It is also possible to download
the data for selective packages, by pressing a command key + mouse click to select
the desired package rows. Moreover, the tool provides meta-data for the vulnerable
package, e.g., number of total vulnerabilities in the package. By clicking on the pack-
age name, more details about each vulnerability report can be shown, e.g., a reference
to the report, as shown in Figure 15.

Moreover, the prototype provides an analysis of the trend of vulnerabilities in
each package. For each package, we plot the distribution of published vulnerabilities
over time. Figure 16 shows an example plot for vulnerability trends in the ansible
package. The figure shows that the number of vulnerabilities affecting ansible ranges
between 1 and 4. The number of vulnerabilities ranges between one to two vulnera-
bilities before 2021. However, the number has increased to 4 vulnerabilities in 2021
and 2022. We believe such plots can help package users build a better understanding
of the security health of the package and how active and mature the project is in terms
of discovering and reporting vulnerabilities. In fact, prior work (e.g., [64]) found that
a small number of vulnerabilities may indicate that a project does not expend much
effort to find vulnerabilities. We incorporated these plots in our prototype tool for
packages with more than 10 vulnerabilities. The user can find a plot icon under the
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Fig. 14: Screen-shot of the DEPHEALTH website showing its main interface [63]. The
columns’ names that appeared inside the red-colored borders are the main metrics
calculated for each vulnerable package.

Fig. 15: A Screen-shot showing some meta-data for vulnerabilities in the Accesscon-
trol package.

column ”Number of Vulnerability reports.” Clicking on the icon opens a new window
that views the plot of the package.

Finally, note that to avoid the out-of-date analysis, our pipeline for analysing the
data is completely automated, which helps to easily update the website periodically.
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Fig. 16: Distribution of reported vulnerabilities in the Ansible package.

The tool is publicly available through this website [63]. Moreover, to make the pro-
totype tool active and provide the user with up-to-date data, we schedule a cron job
that runs monthly to collect updated data from the Snyk vulnerability database and
perform the analysis to incorporate it into the tool website. The website currently
contains 3,324 vulnerability reports that correspond to 1,156 vulnerable python pack-
ages, i.e., 458 packages have been added to the data as new vulnerable packages since
we performed our study.

8 Threats to Validity

In this section, we state some threats to validity that our study is subject to, as well as
the actions we took to mitigate these threats.

8.1 Internal Validity

The internal validity is related to the validity of the vulnerabilities dataset used in
our analysis. Our dataset is restricted to a limited number of vulnerabilities (i.e.,
1,396 security reports). We believe that many vulnerable packages may have been
discovered and fixed but not yet reported. However, since Snyk team monitors more
widely used packages [65], we expect our results to be representative of high-quality
Python packages. Furthermore, our vulnerability dataset contains more than 1,300
reports that cover 16 years of PyPi reported vulnerabilities, and many of these reports
are related to a popular and most used Python packages (e.g., Django, Flask, Numpy,
Requests).

With respect to the cascading impact of vulnerabilities on the dependent projects,
we only take into consideration runtime dependencies (i.e. dependencies that are re-
quired to install and run packages). While another type of dependencies could be
considered (such as development dependencies), we decide to not include them as
they tend to have no effect on the production environment. For that same reason,
libraries.io considers only runtime dependencies in their dataset.

Another concern is whether the vulnerability that inhabits a dependency actually
affect its dependent project. An industrial report by SAFECode [66] recommends
package users to evaluate if a vulnerability in the packages is really being used by the
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dependent. However, checking thousands of packages and dependencies automati-
cally is a hard task, where there is little type information at the source-code level.
This was also confirmed by Hejderup et al. [67], where authors stated that analysing
the usage of dependencies is very difficult, as building such a large-scale call-graph
is time consuming and prone to false-positives.

Finally, in our analysis, we used the vulnerability severity level provided by
Snyk.io to quantify their impact. However, the severity level published by Snyk.io
is not necessarily uncontested, as discussed in Section 6.1, PyPi security advisories
might have had different assessments on the severity of some vulnerabilities. Unfor-
tunately, the severity analysis data provided by the PyPi ecosystem is not publicly
available, therefore, we had to rely on the Snyk.io dataset as the only source of in-
formation for the severity of vulnerabilities. Also, vulnerability sources other than
Snyk could be used, however, our choice of Snyk is influenced by several previous
studies [5, 68, 69]

8.2 Conclusion validity.

Our study uses the Kaplan-Meier test to analyze to estimate the survival functions of
several time events. Our results may be biased because the test is purely a significance
test and cannot provide an estimate of the size of the difference between the groups.
Another limitation of the Kaplan-Meier test method is that it only provides survival
probabilities, i.e., it may be needed to adjust the probability for potential confounders
that may impact the test results. Although this is a threat, we would like to state that
the Kaplan Meier test can still provide an average overview related to the event. Also,
the test does not require too many features, i.e., time to the survival analysis event is
only required for our evaluation. Furthermore, several similar studies have adopted
the test to perform “time to event” analysis [5, 30, 70, 71].

8.3 External Validity

External validity concerns the generalization of our results to other software ecosys-
tems and programming languages. As shown in our comparison to the npm, some of
our findings generalized also to the npm ecosystem, while other findings did not. Al-
though our methodology and approach could be applied to other software ecosystems,
results might be (and unsurprisingly so) quite different from PyPi, due to characteris-
tics such as policies, community practices, programming language features and other
factors belonging to software ecosystems [16, 72]. Therefore, a replication of our
work using packages written in programming languages other than PyPi and npm is
required to establish a more complete view of vulnerabilities in software ecosystems.
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9 Related Work

In this section, we discuss the related literature by focusing on studies that investigate
software ecosystems in general, and studies that approach the link of security-related
issues and software ecosystems.

Software Ecosystems. Several aspects of Software Ecosystems have been subject of
great interest in the related literature. For example, some works analysed the ecosys-
tem’s growth [73, 74]. Fard et al. [73] showed that the number of dependencies in
npm projects is 6 on average and the number is always in a growing trend.

Other works qualitatively studied the fragility and breaking changes in software
ecosystems. Bogart et al. [72] compared Eclipse, CRAN, and npm in terms of prac-
tices that are used by developers to decide about causes of API breaking changes.
They found that all three ecosystems are significantly different in terms of practices
towards breaking changes, due to some particular community values in each ecosys-
tem.

A few studies conducted a comparison across software ecosystems. Decan et
al. [19, 20] empirically compared the dependency network evolution in 7 ecosys-
tems (including npm). They discovered some differences across ecosystems that can
be attributed to ecosystems’ policies. For instance, the CRAN ecosystem has a policy
called “rolling release”, where packages should always be compatible with the latest
release of their dependencies since CRAN can only install the latest release automat-
ically. Hence, developers could face issues when updating because a change in one
package can affect many others.

While the aforementioned work served as a motivation to our investigation, the
focus of our study is fundamentally different. Our work can be used as to complement
previous work by providing a view on another important quality metric of software
ecosystems: security vulnerabilities.

Security Vulnerabilities in Ecosystems. The potential fragility of the ecosystems
shown in previous studies (e.g., [18, 72]) has motivated researchers to examine se-
curity vulnerabilities, as vulnerabilities are one of the most problematic aspects of
software ecosystems [1]. Camillo et al. [75] empirically studied the correlation be-
tween vulnerabilities and bugs (non-security bugs). They did analysis only based on
Chromium Project. They found no correlation between bugs and vulnerabilities, and
files of high bugs density are not overlapped with files of high vulnerability density.
A study by Pham et al. [76] presented an empirical study to analyse vulnerabilities
in the source code, and found that most vulnerabilities are recurring due to software
code reuse and package adoption.

Studies by Derr et al. [77] and Massacci et al. [78] showed that vulnerabilities
appeared commonly in unmaintained code and old versions, and could be fixed by just
an update to a newer version. Acknowledging that the use of external components,
especially outdated ones, can increase risks, e.g., vulnerabilities and comparability
issues, Cox et al. [79] evaluated the so-called ”dependency freshness”, to understand
the relationship between outdated dependencies and vulnerabilities using an industry
benchmark. The authors found that vulnerabilities were four times more likely to
occur in outdated systems than in updated systems.
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Other studies focused on analysing vulnerabilities in software ecosystems. Hejderup
et al. [4] conducted an empirical study on the impact of security vulnerabilities in the
npm ecosystem. They analysed 19 npm vulnerable packages, and found that the num-
ber of vulnerabilities is growing over time. Neuhaus and Zimmermann [80] analysed
vulnerabilities that affect RedHat packages and their dependencies and build a model
to predict packages with vulnerabilities. Zimmermann et al. [6] studied the security
risk of the npm ecosystem dependencies and showed that individual packages could
impact large parts of the entire ecosystem. They also observed that a very small num-
ber of maintainers (20 accounts) could be used to inject malicious code into thousands
of npm packages, a problem that has been increasing over time. Zerouali et al. [81]
identified that vulnerabilities that affect npm packages are common in official Docker
containers. A study by Zapata et al. [82] assessed the danger of having vulnerabilities
in dependent packages by analyzing function calls of the vulnerable functions, and
found that 73.3% of the 60 studied projects were actually safe because they did not
make use of the vulnerable functionality.

The management of package vulnerabilities was also studied in other ecosystems
like packages written in Java. Kula et al. [21] explored how developers respond to the
available security awareness mechanisms such as library migration, and found that
developers were unaware of most vulnerabilities in dependencies and prefer to use
outdated versions to reduce the risks of breaking changes. Ruohomen [83] conducted
a release-based time series analysis for vulnerabilities in Python web applications,
and found the appearance probabilities of vulnerabilities in different versions of the
applications followed the Markov model property. Prana et al. [84] studied several
project characteristics and their impact on the project being affected by vulnerable
packages. They focused on project from three languages, Java, Python, and Ruby.
They found that project activity level, popularity, and developer experience have no
correlation with the project being affected by dependency vulnerabilities, which high-
lights the importance of managing dependencies and their security updates, regardless
of the project characteristics.

Recently, Bodin et al. [85] analysed npm packages to study lags of vulnerable
release and its fixing release, and found that the fixing release is rarely released on
its own; 85.72% of the bundled commits in the fixing release are unrelated to a fix.
Similar to npm packages, Wang et al. [86] found that Java packages contained de-
pendencies which lag for a long time and never been updated. Alfadel et al. [87]
examined the use of Dependabot security pull-requests (PRs) for tackling vulnerable
packages in 2,904 JavaScript projects, and found that a large proportion (65.42%) of
Dependabot security PRs are merged, often in one day, indicating that Dependabot
can be of great help to increase awareness of developers to dependency vulnerabilities
in their projects. Also, Pashchenko et al. [62] conducted interviews with developers
of C/C++, Java, JavaScript, and Python to understand how they manage their pack-
ages with respect to security vulnerabilities. The results indicated a high demand
for high-level metrics to show how maintained and secure is a package. Our study
methodology (as suggested in Section 6.2) can be employed to provide developers
with such metrics for package selection process.

Ponta et al. [15,88] proposed a code-centric approach to detect and mitigate open
source vulnerabilities for Java and Python industry grade applications. Pashchenkoet
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al. [14, 89] addressed the over-estimation problem of approaches that report vulner-
able dependencies in the Java ecosystem. They introduced the concept of halted de-
pendencies to describe the libraries that are no longer maintained, and studied 200
popular Java packages used by SAP in its own software. They found that 20% of
the known vulnerable dependencies are not deployed, and hence, have less chance
to be exploited. Also, they found that 82% of the vulnerable dependencies deployed
in the software could be fixed by simply updating to the patch version. Di Penta et
al. [90] assessed three static analysis tools for detecting source code vulnerabilities
in three open-source network systems, accounting for the evolution of code vulnera-
bilities. The authors did not find much overlap between the tools’ results, suggesting
no “silver bullet” vulnerability detection tool.

Novelty of our study. We conducted our study to examine security vulnerabilities
in the PyPi ecosystem. We studied several aspects related to vulnerability propaga-
tion, their discovery and fix timeliness. By comparing our findings with the ones re-
ported by Zerouali et al. [7], we identified some particularities of the PyPi ecosystem
and devise important recommendations to improve the safety of PyPi. Moreover, we
extend our study by examining the impact of dependency vulnerabilities on Python
dependent projects, considering their production releases. Finally, we developed a
prototype tool that supports our study analysis. We believe that such a tool can be
further improved and be very beneficial to projects maintainers, to fulfill the need for
understanding the health of their project dependencies.

10 Conclusion

In this paper, we conduct an empirical study of security vulnerabilities in the PyPi
ecosystem, evaluating over than 1,396 package vulnerabilities that affect 698 pack-
ages. In particular, we explore vulnerabilities propagation, discovery, and fixes. Also,
we examine the impact of vulnerable package on a set of 2,224 Python dependent
projects. Finally, we compare our findings with the npm ecosystem [7].

Our results show that PyPi vulnerabilities are increasing over time, affecting the
large majority of package versions. Moreover, our findings reveal shortcomings in
the process of discovering vulnerabilities in PyPi packages, i.e., they take more than
3 years to discover them. Additionally, we observe that the timing of vulnerability
patches does not closely align with the public disclosure date, leaving open windows
and chances for an attacker exploitation. We note that over a large portion of vul-
nerabilities (40.86%) were patched only after public disclosure. When analysing the
impact on the dependent projects, we find that the majority (55.62%) of the depen-
dent projects depend on vulnerable dependencies. Affected projects have, on median,
83.77% of their releases affected. In most cases, projects are affected by just a single
vulnerable dependency. Such project also take a long time (7 months) to update their
dependency vulnerabilities to a fixed versions. Finally, our comparison to npm vul-
nerabilities reveals in some aspects a departure from the npm’s findings, which can
be attributed to ecosystems polices.

Future work should focus on broadening our study to other ecosystems and work
on the development of package security tools that help practitioners at selecting and



36 Mahmoud Alfadel et al.

using secure software packages. In addition, we plan to evaluate the usefulness of our
prototype tool (i.e., DepHealth) to evaluate the usefulness of the tool for developers.
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